elliptische Integrale

elliptische Integrale
ellịptische Integrale,
 
Integrale vom Typ wobei R eine rationale Funktion in zwei Variablen und P (x) ein Polynom dritten oder vierten Grades in x ohne mehrfache Nullstelle ist. Ein elliptisches Integral ist im Allgemeinen nicht durch elementare Funktionen darstellbar, jedoch lässt sich jedes elliptische Integral durch geeignete Variablentransformation in eine Summe von elementaren Funktionen und Integralen der Form
 
für 0 < k2 < 1 überführen. Diese Integrale heißen unvollständige elliptische Integrale erster, zweiter und dritter Ordnung; die durch die Substitution x = sin ϕ erhaltene Darstellung nennt man legendresche Normalform. Elliptische Integrale sind die Umkehrfunktionen der elliptischen Funktionen.

Universal-Lexikon. 2012.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Elliptische Integrale — Ein Elliptisches Integral ist ein Integral vom Typ wobei R eine rationale Funktion in zwei Variablen und P(x) ein Polynom dritten oder vierten Grades ohne mehrfache Nullstelle ist. Der Name rührt daher, dass Integrale dieser Form bei der… …   Deutsch Wikipedia

  • Elliptische Integrale und Funktionen — Elliptische Integrale und Funktionen. Kommt in einem Integral unter dem Integralzeichen eine Quadratwurzel aus einem Ausdruck 3. oder 4. Grades in x vor, so wird dasselbe als ein elliptisches Integral bezeichnet. Man unterscheidet hierbei drei… …   Lexikon der gesamten Technik

  • Elliptische Integral-Funktion — Ein Elliptisches Integral ist ein Integral vom Typ wobei R eine rationale Funktion in zwei Variablen und P(x) ein Polynom dritten oder vierten Grades ohne mehrfache Nullstelle ist. Der Name rührt daher, dass Integrale dieser Form bei der… …   Deutsch Wikipedia

  • Elliptische Kurve — In der Mathematik ist eine elliptische Kurve eine singularitätenfreie algebraische Kurve der Ordnung 3 in der projektiven Ebene. Beispiel einer elliptischen Kurve über dem Körper der reellen Zahlen Elliptische Kurven über dem Körper der reellen… …   Deutsch Wikipedia

  • Elliptische Functionen — (Elliptische Transscendenten), Functionen, deren Integrale von der Länge elliptischer Bogen abhängen, die bei gegebenen Halbachsen einer gewissen Abscisse entsprechen. Sie sind alle begriffen in dem Integrale: worin R eine rationale Function von… …   Pierer's Universal-Lexikon

  • Elliptische Funktion — Im mathematischen Teilgebiet der Funktionentheorie sind elliptische Funktionen doppeltperiodische meromorphe Funktionen. „Doppeltperiodisch“ bedeutet, dass es zwei komplexe Zahlen ω1,ω2 gibt, die linear unabhängig im reellen Vektorraum sind, so… …   Deutsch Wikipedia

  • Elliptische Funktionen — Im mathematischen Teilgebiet der Funktionentheorie sind elliptische Funktionen doppeltperiodische meromorphe Funktionen. „Doppeltperiodisch“ bedeutet, dass es zwei komplexe Zahlen ω1,ω2 gibt, die keine reellen Vielfachen voneinander sind, so dass …   Deutsch Wikipedia

  • elliptische Funktionen — ellịptische Funktionen,   meromorphe Funktionen, die doppeltperiodisch sind, d. h., die den Funktionalgleichungen f (z + p1) = f (z) und f (z + p2) = f …   Universal-Lexikon

  • Weierstraßsche elliptische Funktion — Im mathematischen Teilgebiet der Funktionentheorie sind elliptische Funktionen doppeltperiodische meromorphe Funktionen. „Doppeltperiodisch“ bedeutet, dass es zwei komplexe Zahlen ω1,ω2 gibt, die keine reellen Vielfachen voneinander sind, so dass …   Deutsch Wikipedia

  • Jacobische elliptische Funktion — In der Mathematik ist eine Jacobische elliptische Funktion eine von zwölf speziellen elliptischen Funktionen. Die Jacobischen elliptischen Funktionen haben einige Analogien zu den trigonometrischen Funktionen und finden zahlreiche Anwendungen in… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”